Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

a note on critical point and blow-up rates for singular and degenerate parabolic equations

in this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,t)$, subject to nulldirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. the optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Blow-up for Degenerate Parabolic Equations with Nonlocal Source

This paper deals with the blow-up properties of the solution to the degenerate nonlinear reaction diffusion equation with nonlocal source xut − (xux)x = ∫ a 0 u pdx in (0, a) × (0, T ) subject to the homogeneous Dirichlet boundary conditions. The existence of a unique classical nonnegative solution is established and the sufficient conditions for the solution exists globally or blows up in fini...

متن کامل

Blow-up at the Boundary for Degenerate Semilinear Parabolic Equations

This paper concerns a superlinear parabolic equation, degenerate in the time derivative. It is shown that the solution may blow up in finite time. Moreover it is proved that for a large class of initial data blow-up occurs at the boundary of the domain when the nonlinearity is no worse than quadratic. Various estimates are obtained which determine the asymptotic behaviour near the blow-up. The ...

متن کامل

Existence of Boundary Blow up Solutions for Singular or Degenerate Fully Nonlinear Equations

We prove here the existence of boundary blow up solutions for fully nonlinear equations in general domains, for a nonlinearity satisfying KellerOsserman type condition. If moreover the nonlinearity is non decreasing , we prove uniqueness for boundary blow up solutions on balls for operators related to Pucci’s operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2015

ISSN: 1078-0947

DOI: 10.3934/dcds.2016.36.661